Saturday, March 13, 2010

video door phone

It is a solution for security and can be used in home automation as well. Video door phone has become a necessity of our life because we love our families and we want to protect them. We require a way to see the visitor and have a conversation before allowing the visitor into the house.

We also wish to keep a watch on children when they are playing in the garden or in the club house.

The high quality video door phone is a state-of-the-art product which comprises of:

  • An indoor unit with a monitor
  • An outdoor unit with an in-built microphone and camera

The hands-free video door phone enables the person inside the house to see the visitor and have a conversation before entry into the house.

Reference link

Thursday, March 11, 2010

CCTV System

Closed-circuit television (CCTV) is the use of video cameras to transmit a signal to a specific place, on a limited set of monitors.

It differs from broadcast television in that the signal is not openly transmitted, though it may employ point to point wireless links. CCTV is often used for surveillance in areas that may need monitoring such as banks, casinos, airports, military installations, and convenience stores.

In industrial plants, CCTV equipment may be used to observe parts of a process from a central control room; when, for example, the environment is not suitable for humans. CCTV systems may operate continuously or only as required to monitor a particular event. A more advanced form of CCTV, utilizing Digital Video Recorders (DVRs), provides recording for possibly many years, with a variety of quality and performance options and extra features (such as motion-detection and email alerts).

Surveillance of the public using CCTV is particularly common in the UK, where there are reportedly more cameras per person than in any other country in the world. There and elsewhere, its increasing use has triggered a debate about security versus privacy.

Reference link

Sunday, March 7, 2010

WI-MAX

WiMAX, meaning Worldwide Interoperability for Microwave Access, is a telecommunications technology that provides wireless transmission of data using a variety of transmission modes, from point-to-multipoint links to portable and fully mobile internet access. The technology provides up to 10 Mbps broadband speed without the need for cables. The technology is based on the IEEE 802.16 standard (also called Broadband Wireless Access). The name "WiMAX" was created by the WiMAX Forum, which was formed in June 2001 to promote conformity and interoperability of the standard. The forum describes WiMAX as "a standards-based technology enabling the delivery of last mile wireless broadband access as an alternative to cable and DSL".

Reference link

Tuesday, March 2, 2010

WISENET

WISENET is a wireless sensor network that monitors the environmental conditions such as light, temperature, and humidity. This network is comprised of nodes called "motes" that form an ad-hoc network to transmit this data to a computer that function as a server. The server stores the data in a database where it can later be retrieved and analyzed via a web-based interface. The network works successfully with an implementation of one sensor mote.

Introduction:
The technological drive for smaller devices using less power with greater functionality has created new potential applications in the sensor and data acquisition sectors. Low-power microcontrollers with RF transceivers and various digital and analog sensors allow a wireless, battery-operated network of sensor modules ("motes") to acquire a wide range of data. The TinyOS is a real-time operating system to address the priorities of such a sensor network using low power, hard real-time constraints, and robust communications.

The first goal of WISENET is to create a new hardware platform to take advantage of newer microcontrollers with greater functionality and more features. This involves selecting the hardware, designing the motes, and porting TinyOS. Once the platform is completed and TinyOS was ported to it, the next stage is to use this platform to create a small-scale system of wireless networked sensors.

System Description:
There are two primary subsystems (Data Analysis and Data Acquisition) comprised of three major components (Client, Server, Sensor Mote Network).
Primary Subsystems:
There are two top-level subsystems -
Data Analysis
Data Acquisition.

Data Analysis:
This subsystem is software-only (relative to WISENET). It relied on existing Internet and web (HTTP) infrastructure to provide communications between the Client and Server components. The focus of this subsystem was to selectively present the collected environmental data to the end user in a graphical manner.

Reference link

Monday, March 1, 2010

Optical fiber communication

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information. First developed in the 1970s, fiber-optic communication systems have revolutionized the telecommunications industry and have played a major role in the advent of the Information Age. Because of its advantages over electrical transmission, optical fibers have largely replaced copper wire communications in core networks in the developed world.

The process of communicating using fiber-optics involves the following basic steps: Creating the optical signal involving the use of a transmitter, relaying the signal along the fiber, ensuring that the signal does not become too distorted or weak, receiving the optical signal, and converting it into an electrical signal.

Optical fiber is used by many telecommunications companies to transmit telephone signals, Internet communication, and cable television signals. Due to much lower attenuation and interference, optical fiber has large advantages over existing copper wire in long-distance and high-demand applications. However, infrastructure development within cities was relatively difficult and time-consuming, and fiber-optic systems were complex and expensive to install and operate. Due to these difficulties, fiber-optic communication systems have primarily been installed in long-distance applications, where they can be used to their full transmission capacity, offsetting the increased cost. Since 2000, the prices for fiber-optic communications have dropped considerably. The price for rolling out fiber to the home has currently become more cost-effective than that of rolling out a copper based network. Prices have dropped to $850 per subscriber in the US and lower in countries like The Netherlands, where digging costs are low.

Since 1990, when optical-amplification systems became commercially available, the telecommunications industry has laid a vast network of intercity and transoceanic fiber communication lines. By 2002, an intercontinental network of 250,000 km of submarine communications cable with a capacity of 2.56 Tb/s was completed, and although specific network capacities are privileged information, telecommunications investment reports indicate that network capacity has increased dramatically since 2004.

Reference link

Lightweight Directory Access Protocol

The Lightweight Directory Access Protocol, or LDAP ,is an application protocol for querying and modifying directory services running over TCP/IP.

A directory is a set of objects with attributes organized in a logical and hierarchical manner. A simple example is the telephone directory, which consists of a list of names (of either persons or organizations) organized alphabetically, with each name having an address and phone number associated with it.

An LDAP directory tree often reflects various political, geographic, and/or organizational boundaries, depending on the model chosen. LDAP deployments today tend to use Domain Name System (DNS) names for structuring the topmost levels of the hierarchy. Deeper inside the directory might appear entries representing people, organizational units, printers, documents, groups of people or anything else that represents a given tree entry (or multiple entries).

Its current version is LDAPv3, which is specified in a series of Internet Engineering Task Force (IETF) Standard Track Requests for comments (RFCs) as detailed in RFC 4510

A client starts an LDAP session by connecting to an LDAP server, called a Directory System Agent (DSA), by default on TCP port 389. The client then sends an operation request to the server, and the server sends responses in return. With some exceptions, the client does not need to wait for a response before sending the next request, and the server may send the responses in any order.

The client may request the following operations:

    * Start TLS — use the LDAPv3 Transport Layer Security (TLS) extension for a secure connection
    * Bind — authenticate and specify LDAP protocol version
    * Search — search for and/or retrieve directory entries
    * Compare — test if a named entry contains a given attribute value
    * Add a new entry
    * Delete an entry
    * Modify an entry
    * Modify Distinguished Name (DN) — move or rename an entry
    * Abandon — abort a previous request
    * Extended Operation — generic operation used to define other operations
    * Unbind — close the connection (not the inverse of Bind)

Reference links